

Programming GDI+ in Vulcan.Net 1

Programming GDI+ in Vulcan.Net

Chris Pyrgas

Introduction
GDI+ is the successor to the old GDI (Graphics Programming Interface), responsible for drawing and painting
on the screen and the printer. In this paper we will discuss the basics of GDI+ and demonstrate how to use it in
Vulcan.Net, through its managed class interface.

GDI+ Structure

The function/handle interface model of GDI is replaced in GDI+ with a class interface model. GDI+ is exposed
to the programmer through a set of classes, counting more than a hundred members that provide an easy way to
use the numerous features of GDI+. Those features include basic ones like drawing simple shapes (lines,
rectangles etc), text and images, and extend to more advanced like transparency, alpha blending, painting with
gradient colors and drawing of complex shapes. Also almost every method in GDI+ classes is overloaded with
many versions, offering different ways to accomplish the same task.

NameSpaces

A Namespace can be described as a way to group together classes that are used for a similar purpose. A
namespace can contain any number of classes that may span around many DLL files. Most basic GDI+ classes
(Point, Rectangle, Color, Brush etc) are grouped into the namespace named “System.Drawing”, while some
classes implementing advanced functionality are included in the following namespaces:

�� System.Drawing.Drawing2D

�� System.Drawing.Imaging

�� System.Drawing.Text

�� System.Drawing.Printing

The classes and methods included in the above namespaces are declared in a single DLL file named
“System.Drawing.dll”. This is contained in the Global Assembly Cache (GAC) folder, usually located at
“C:\WINDOWS\GAC” in every Windows PC with the .Net Framework installed.

2 Programming GDI+ in Vulcan.Net

Framework app

In order to demonstrate using GDI+, we need to create a simple framework application. The following code
creates and shows a simple form on the screen:

REFERENCES "System.Windows.Forms.dll"
REFERENCES "System.Drawing.dll"

FUNCTION Start() AS VOID
 LOCAL oForm AS SampleForm
 oForm:=SampleForm{}
 oForm:Show()
 System.Windows.Forms.Application.Run(oForm)
RETURN

CLASS SampleForm INHERIT System.Windows.Forms.Form
CONSTRUCTOR() CLASS SampleForm
 SUPER()
 SELF:Text:='GDI Sample'
 SELF:ClientSize:=System.Drawing.Size{400,400}
RETURN

The first two lines of code instruct the compiler that we want to use some classes contained in the two referred
DLL files, “System.Windows.Forms.dll” and “System.Drawing.dll”. The first one contains classes from the
same named namespace System.Windows.Forms, while the second contains classes from the various
System.Drawing.* namespaces mentioned above.

System.Windows.Forms.Form and System.Drawing.Size are the fully qualified names of the Form and Size
classes, contained in System.Windows.Forms.Form and System.Drawing namespaces respectively. Since we
will be making much use of classes in those namespaces, there fortunately exists a way to tell the compiler that
the namespace part of those classes should be implied, saving us a lot of typing. This is achieved with the
‘USING <NameSpace>” compiler directive:

REFERENCES "System.Windows.Forms "
REFERENCES "System.Drawing "

USING System.Windows.Forms
USING System.Drawing

FUNCTION Start() AS VOID
 LOCAL oForm AS SampleForm
 oForm:=SampleForm{}
 oForm:Show()
 oForm:DoSomeDrawing()
 Application.Run(oForm)
RETURN

CLASS SampleForm INHERIT Form
CONSTRUCTOR() CLASS SampleForm
 SUPER()
 SELF:Text:='GDI Sample'
 SELF:ClientSize:=Size{600,400}
RETURN

METHOD DoSomeDrawing() AS VOID CLASS SampleForm
RETURN

Also note that in the above sample, we have used another version of the REFERENCES directive, which uses
an assembly name (“System.Windows.Forms”, “System.Drawing”) instead of a DLL filename. For more
information about the REFERENCES directive, please refer to the Vulcan.NET documentation.

Programming GDI+ in Vulcan.Net 3

Obtaining a Graphics object

In the code above we have added a call to DoSomeDrawing() method in our form after showing it, that will
be used for some simple painting. In order to draw something in our form, we need to get a Graphics object. This
is the equivelant of a Device Context (DC) in GDI, and contains numerous methods and properties for drawing
shapes, text and images in many different styles. We can obtain a Graphics object, associated with our form, by
using the form’s CreateGraphics() method:

METHOD DoSomeDrawing() AS VOID CLASS SampleForm

 LOCAL oGraphics AS Graphics

 oGraphics := SELF:CreateGraphics()
 // do some drawing
 oGraphics:Dispose()

RETURN

When we’re done with our painting, we need to release the resources used by this Graphics object, by calling its
Dispose() method.

Drawing lines

Now let’s do our first simple drawing. We will use Graphics object’s DrawLine() method to draw a line on
the form surface. One of the overloads of DrawLine() is declared as follows (translated from C# into
Vulcan.NET code) :

METHOD DrawLine(oPen AS Pen, x1 AS INT, y1 AS INT, x2 AS INT, y2 AS INT) ;

AS VOID CLASS Graphics

This method draws a line from (x1,y1) to (x2,y2) coordinate pairs using an instance of the Pen class. By default
the (0,0) point is located at the upper left corner of the form’s client area.

Pen class

The Pen object describes the style that will be used when drawing a line. The simplest Pen class constructor
needs a Color object passed to it:

CONSTRUCTOR (oColor AS Color) CLASS Pen

Color is actually a .Net Structure, but we can treat it like a class in Vulcan.NET. Many predefined Color objects
(called Static Properies) with names like Color.Red, Color.Blue etc are already available for use, but we can also
create custom colors by mixing the specified Red, Green and Blue values using the Color.FromArgb(Red,
Green, Blue) function (Static Method in .Net).

4 Programming GDI+ in Vulcan.Net

In our example we will just use a Pen object with a Red color. The code for drawing a line is the following:

METHOD DoSomeDrawing() AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 oGraphics := SELF:CreateGraphics()
 oPen := Pen{ Color.Red }
 oGraphics:DrawLine(oPen, 0, 0, 300, 300)
 oGraphics:Dispose()
RETURN

If you add this code in the framework app and run it, the result will be a form with a diagonal line drawn on it :

Drawing lines using Point objects

Let’s have a look at another overload of the DrawLine() method :

METHOD DrawLine(oPen AS Pen, pt1 AS Point, pt2 AS Point) AS VOID CLASS Graphics

This overload requires two instances of the Point class, instead of four integers. The point class (again a structure
in .Net terms) represents a pair of (x,y) coordinates; pt1 is the point where the line begins and pt2 is the ending
point. The most commonly used Point class Constructor is declared as:

CONSTRUCTOR (x AS INT, y AS INT) CLASS Point

Programming GDI+ in Vulcan.Net 5

The above example can be rewritten using Points in the following way:

METHOD DoSomeDrawing() AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 LOCAL oStartPoint,oEndPoint AS Point
 oGraphics := SELF:CreateGraphics()
 oPen := Pen{ Color.Red}
 oStartPoint := Point{ 0, 0 }
 oEndPoint := Point{ 300, 300 }
 oGraphics:DrawLine(oPen, oStartPoint, oEndPoint)
 oGraphics:Dispose()
RETURN

Pen properties

The result with a simple line is not very impressive, but there are ways to make our lines look a bit fancier.

Width

We can change a line’s thickness from only one pixel wide to any size, using the Width property:

oPen:Width := 5 // set pen width to 5 pixels

Color

After instantiating a Pen object, we can change its drawing color at will, by simply reassigning a different Color
value to its Color property:

oPen:Color := Color.Blue // set pen’s color to blue

DashStyle

Except for solid lines, we can draw dotted or dashed lines using the DashStyle property. In this property we can
assign a member of the DashStyle enumeration (Enumerations can be described as a number of DEFINE’s
declared for a similar purpose, grouped under the same base name.). Members of DashStyle include:

�� DashStyle.Solid (solid line)

�� DashStyle.Dot (dotted line)

�� DashStyle.Dash (dashed line)

�� DashStyle.DashDot (line with alternating dots and dashes)

An example of assigning a DashStyle value to a Pen:

oPen:DashStyle := DashStyle.Dash // set dash style to dashes

6 Programming GDI+ in Vulcan.Net

The following version of DoSomeDrawing() demonstrates usage of the Width, Color and DashStyle
properties:

METHOD DoSomeDrawing() AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 LOCAL n AS INT
 oGraphics := SELF:CreateGraphics()
 oPen := Pen{ Color.Empty }
 FOR n:=0 UPTO 11
 DO CASE
 CASE n <= 3
 oPen:Color := Color.Red
 CASE n <= 7
 oPen:Color := Color.Blue
 OTHERWISE
 oPen:Color := Color.Green
 END CASE
 DO CASE
 CASE n % 4 == 0
 oPen:DashStyle := DashStyle.Solid
 CASE n % 4 == 1
 oPen:DashStyle := DashStyle.Dash
 CASE n % 4 == 2
 oPen:DashStyle := DashStyle.Dot
 CASE n % 4 == 3
 oPen:DashStyle := DashStyle.DashDot
 END CASE
 oPen:Width := n / 2 + 1
 oGraphics:DrawLine(oPen, 10, 20 + n * 30, 390, 20 + n * 30)
 NEXT
 oGraphics:Dispose()
RETURN

DashStyle enumeration is contained in System.Drawing.Drawing2D namespace, so we also need to add the
following line of code in the beginning of our source:

USING System.Drawing.Drawing2D

After making the above changes in our code and running it, the output should look like this:

Programming GDI+ in Vulcan.Net 7

Using OnPaint() callback method for drawing operations

Drawing with the method described above (by creating a Graphics objects with CreateGraphics()) has a
big disadvantage; everything we draw on the form is volatile. If the user moves another window over our form
and removes it back, the lines we’ve drawn will disappear. The solution is to do all drawing operations within
the Form’s OnPaint() callback method, which is automatically called every time Windows decides that a part
of our Form’s contents or all of it needs to be repainted. The OnPaint method is declared as:

METHOD OnPaint (e AS PaintEventArgs) AS VOID CLASS Form

PaintEventArgs is a class that holds information about which part of the form needs painting (ClipRect
property) and provides us a Graphics object that we can use to paint the form’s surface. When we obtain a
graphics object through the OnPaint method, we don’t need to (and should not) release it with its Dispose()
method. A sample using OnPaint() looks like this:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 oGraphics := e:Graphics
 // do some drawing here
RETURN

Here is also the full previous line sample, rewritten using OnPaint() method instead of
DoSomeDrawing():

REFERENCES "System.Windows.Forms "
REFERENCES "System.Drawing "

USING System.Windows.Forms
USING System.Drawing
USING System.Drawing.Drawing2D

FUNCTION Start() AS VOID
 LOCAL oForm AS SampleForm
 oForm:=SampleForm{}
 oForm:Show()
 Application.Run(oForm)
RETURN

CLASS SampleForm INHERIT Form
CONSTRUCTOR() CLASS SampleForm
 SUPER()
 SELF:Text:='GDI Sample'
 SELF:ClientSize:=Size{400,400}
RETURN

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 LOCAL n AS INT
 oGraphics := e:Graphics
 oPen := Pen{ Color.Empty }
 FOR n:=0 UPTO 11
 DO CASE
 CASE n <= 3
 oPen:Color := Color.Red
 CASE n <= 7
 oPen:Color := Color.Blue
 OTHERWISE
 oPen:Color := Color.Green
 END CASE
 DO CASE
 CASE n % 4 == 0

8 Programming GDI+ in Vulcan.Net

 oPen:DashStyle := DashStyle.Solid
 CASE n % 4 == 1
 oPen:DashStyle := DashStyle.Dash
 CASE n % 4 == 2
 oPen:DashStyle := DashStyle.Dot
 CASE n % 4 == 3
 oPen:DashStyle := DashStyle.DashDot
 END CASE
 oPen:Width := n / 2 + 1
 oGraphics:DrawLine(oPen, 10, 20 + n * 30, 390, 20 + n * 30)
 NEXT
RETURN

The result on screen will be exactly the same as before, only this time the lines will be redrawn each time a part
of the form gets invalidated.

Drawing Shapes

Enough is enough with simple lines! Let’s move on now and draw some a bit more complex shapes like
rectangles, circles and ellipses. The Graphics class’ method used for drawing rectangles is (not surprisingly!)
named DrawRectangle():

METHOD DrawRectangle(oPen AS Pen, x AS INT, y AS INT, width AS INT, height AS INT) ;

AS VOID CLASS Graphics

This method draws a rectangle starting at (x,y) with the specified width and height, using a Pen object. Again we
can assign to the Pen object the styles (color, width etc) described before for painting lines.

Circles and ellipses can be drawn with the DrawEllipse() method:

METHOD DrawEllipse(oPen AS Pen, x AS INT, y AS INT, width AS INT, height AS INT) ;

AS VOID CLASS Graphics

The (x,y) and (width, height) pairs define the bounding rectangle in which the ellipse will be drawn into. If the
width value equals to the height value the shape drawn will be a circle, otherwise it will be a long or tall ellipse.
The following version of the OnPaint() method draws a rectangle on screen, a circle bound to it and an
ellipse drawn with a dashed Pen. It also demonstrates using another constructor of Pen class that accepts two
arguments, a Color and a Width value (in a FLOAT number):

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 oGraphics := e:Graphics

 oPen := Pen { Color.DarkGreen , 3.0}
 oGraphics:DrawRectangle(oPen, 50, 50, 300, 300)

 oPen:Color := Color.Red
 oGraphics:DrawEllipse(oPen, 50, 50, 300, 300)

 oPen:Color := Color.DarkBlue
 oPen:DashStyle := DashStyle.Dash
 oGraphics:DrawEllipse(oPen, 0, 100, 400, 200)
RETURN

Programming GDI+ in Vulcan.Net 9

The screen output:

Using Rectangle class

Rectangles and ellipses can be also drawn with another overload that uses a Rectangle class as an argument,
instead of the (x,y) and (width, height) pairs:

METHOD DrawRectangle(oPen AS Pen, oRect AS Rectangle) AS VOID CLASS Graphics

METHOD DrawEllipse(oPen AS Pen, oRect AS Rectangle) AS VOID CLASS Graphics

Rectangle class defines a rectangle by its starting location, width and height. A rectangle object can be
instantiated using one of its two available constructor methods:

CONSTRUCTOR (x AS INT, y AS INT, width AS INT, height AS INT) CLASS Rectangle
CONSTRUCTOR (location AS Point, size AS Size) CLASS Rectangle

The previous example can be written in a better way with the Rectangle class:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oPen AS Pen
 LOCAL oRectangle AS Rectangle
 oGraphics := e:Graphics

 oPen := Pen { Color.DarkGreen , 3.0}
 oRectangle := Rectangle { 50, 50, 300, 300 }
 oGraphics:DrawRectangle(oPen, oRectangle)

 oPen:Color := Color.Red

10 Programming GDI+ in Vulcan.Net

 oGraphics:DrawEllipse(oPen, oRectangle)

 oPen:Color := Color.DarkBlue
 oPen:DashStyle := DashStyle.Dash
 oGraphics:DrawEllipse(oPen, 0, 100, 400, 200)
RETURN

More drawing methods

Except for rectangles and ellipses, the Graphics class provides methods for drawing a vast number of other
objects like polygons, arcs, pies, curves, splines and more. You can use them in a very similar way to the
methods described above and the .Net Framework SDK Documentation is a great source of information on their
usage.

Drawing Filled Objects

Almost every Draw…() method of the Graphics object has a corresponding Fill…() method that draws the
respective closed shape filed with some color (or in more complex ways as we will see below).

The methods for drawing filled rectangles and ellipses are:

METHOD FillRectangle(oBrush AS Brush, x AS INT, y AS INT, width AS INT, height AS INT) ;

AS VOID CLASS Graphics

METHOD FillEllipse(oBrush AS Brush, x AS INT, y AS INT, width AS INT, height AS INT) ;

AS VOID CLASS Graphics

And their overloads using a Recangle object:

METHOD FillRectangle(oBrush AS Brush, oRect AS Rectangle) AS VOID CLASS Graphics

METHOD FillEllipse(oBrush AS Brush, oRect AS Rectangle) AS VOID CLASS Graphics

Brushes

Both fill methods require a Brush object as their first argument that describes the method used to fill a shape.
Brush is an abstract class, which means it cannot be instantiated directly; instead we need to use one of the
classes that inherit from the Brush class:

�� SolidBrush

�� TextureBrush

�� HatchBrush

�� LinearGradientBrush

�� PathGradientbrush

We will take a closer look at the simplest subclass, SolidBrush:

Programming GDI+ in Vulcan.Net 11

SolidBrush

SolidBrush class is used for painting shapes filled with a single color. It has only one Constructor method
available, which requires a Color object as its single argument:

CLASS SolidBrush INHERIT Brush

CONSTRUCTOR (oColor AS Color) CLASS SolidBrush

So in order to create a Solidbrush object, we need to use for example:

LOCAL oBrush AS SolidBrush
oBrush := SolidBrush { Color.Yellow } // creates a solid yellow brush

Now let’s put the pieces together. The following version of OnPaint() method draws a filled rectangle and
two ellipses on our form:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oBrush AS SolidBrush
 oGraphics := e:Graphics

 oBrush := SolidBrush { Color.Red }
 oGraphics:FillRectangle(oBrush, 50, 50, 300, 300)

 oBrush:Color := Color.Blue

 oGraphics:FillEllipse(oBrush, 0, 100, 400, 100)
 oGraphics:FillEllipse(oBrush, 0, 200, 400, 100)
RETURN

12 Programming GDI+ in Vulcan.Net

Transparent colors/brushes

Shapes can be also filled with semi-transparent brushes, using a GDI+ feature named Alpha Blending. We
create a transparent brush by using a transparent color to instantiate it. A transparent color can be obtained with
each of the following two Color.FromArgb() functions (static class methods):

FUNCTION Color.FromArgb (alpha AS INT, red AS INT, green AS INT, blue AS INT) AS Color
FUNCTION Color.FromArgb (alpha AS INT, oColor AS Color) AS Color

The first overload creates a Color object using the specified alpha value and the red, green and blue component
values (all ranging from 0 to 255), while the second receives a Color object and returns the same color with the
specified alpha value applied to it. The alpha value represents the level of transparency; a value of 0 represents a
totally transparent color and a value of 255 means the color is opaque:

oColor := Color.FromArgb(128, Color.Blue) // create a half-transparent blue color
oBrush := SolidBrush { oColor } // create a half-transparent solid blue brush

The following code draws again a solid red filled rectangle, but uses two different levels of transparency for the
blue ellipses:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oBrush AS SolidBrush
 oGraphics := e:Graphics

 oBrush := SolidBrush { Color.Red }
 oGraphics:FillRectangle(oBrush, 50, 50, 300, 300)

 oBrush:Color := Color.FromArgb(80, Color.Blue)
 oGraphics:FillEllipse(oBrush, 0, 100, 400, 100)

 oBrush:Color := Color.FromArgb(160, Color.Blue)
 oGraphics:FillEllipse(oBrush, 0, 200, 400, 100)
RETURN

Programming GDI+ in Vulcan.Net 13

Other Brush types

A SolidBrush object is a great tool for simple drawing, but we can get a lot more impressive results using one of
the other more sophisticated Brush subclasses. In-depth discussions of those brush styles goes beyond the scope
of this tutorial, but let’s have a look at a small sample using a LinearGradientBrush and a HatchBrush.
Hopefully this will act as an appetizer for you to have a closer look at them!

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oLBrush AS LinearGradientBrush
 LOCAL oHBrush AS HatchBrush
 LOCAL oBackColor AS Color
 oGraphics := e:Graphics

 oLBrush := LinearGradientBrush { Point{0,0} , Point{400,400} ,;

 Color.Yellow , Color.Blue}
 oGraphics:FillRectangle(oLBrush, 0, 0, 400, 400)

 oBackColor := Color.FromArgb(192 , Color.White)

 oHBrush := HatchBrush { HatchStyle.Cross , Color.DarkRed , oBackColor }
 oGraphics:FillPie(oHBrush, 50, 50, 300, 300 , 30 ,120)

 oHBrush := HatchBrush { HatchStyle.DiagonalBrick , Color.DarkBlue , oBackColor }
 oGraphics:FillPie(oHBrush, 50, 50, 300, 300 , 150 ,120)

 oHBrush := HatchBrush { HatchStyle.OutlinedDiamond , Color.DarkGreen , oBackColor }
 oGraphics:FillPie(oHBrush, 50, 50, 300, 300 , 270 ,120)
RETURN

14 Programming GDI+ in Vulcan.Net

Drawing Text

Drawing text is a very easy thing to do, using DrawString() method. The following overload draws a string
with the specified Font at the location specified by oPoint, and paints it with a Brush object (again any of the
Brush types mentioned above):

METHOD DrawString(cText AS STRING, oBrush AS Brush, oFont AS Font, oPoint AS Point) ;

AS VOID CLASS Graphics

Font class

A Font object can be instantiated in many ways. The simplest Font class constructor requires a font name and a
font size (as a float number) :

CONSTRUCTOR (cFontName AS STRING, fSize AS FLOAT) CLASS Font

An exmple on creating a font:

oFont := Font{ ‘Arial’ , 10.0 } // create an “Arial” font with a 10 point size

Now let’s see how we can draw a simple string on our form:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oBrush AS SolidBrush
 LOCAL oFont AS Font
 oGraphics := e:Graphics

 oBrush := SolidBrush{ Color.Blue }
 oFont:=Font {'Arial',15.0}

 oGraphics:DrawString ('Drawing some text' , oFont , oBrush , Point{50,50})
RETURN

FontStyle

There are many situations when we need to print text in Bold, with Italic style, or underlined. In order to make
use of such text drawing styles, we need to use another Font class constructor:

CONSTRUCTOR (cFontName AS STRING, fSize AS FLOAT, eStyle AS FontStyle) CLASS Font

FontStyle is an enumeration that has the following members:

�� Regular (the default)

�� Bold

�� Ialic

�� Underline

�� Strikeout

Font styles can be mixed together to define more complex styles:

oFont := Font{ ‘Courier New’ , 12 , FontStyle.Bold + FontStyle.Italic }
// create a “Courier New” font with a 12 point size and Bold,Italic style

Programming GDI+ in Vulcan.Net 15

The following sample draws text on our form with different font types, colors and styles:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oBrush AS SolidBrush
 LOCAL oFont AS Font
 oGraphics := e:Graphics

 oBrush := SolidBrush{ Color.Green }

 oFont:=Font {'Arial',30.0}
 oGraphics:DrawString ('Arial' , oFont , oBrush , Point{10,50})
 oFont:=Font {'Arial',30.0, FontStyle.Bold}
 oGraphics:DrawString ('Arial BOLD' , oFont , oBrush , Point{10,100})
 oFont:=Font {'Arial',30.0, FontStyle.Italic}
 oGraphics:DrawString ('Arial Italic' , oFont , oBrush , Point{10,150})

 oBrush := SolidBrush{ Color.Red }

 oFont:=Font {'Courier New',20.0}
 oGraphics:DrawString ('Courier New' , oFont , oBrush , Point{10,250})
 oFont:=Font {'Courier New',20.0, FontStyle.Strikeout}
 oGraphics:DrawString ('Courier New Strikeout' , oFont , oBrush , Point{10,300})
 oFont:=Font {'Courier New',20.0, FontStyle.Underline}
 oGraphics:DrawString ('Courier New Underline' , oFont , oBrush , Point{10,350})
RETURN

Important note: in the code snippets we have seen so far, we used local variables inside OnPaint() method
to hold our GDI+ objects (fonts, brushes, pens etc). This is helpful for keeping the samples small and easy to
follow, but it is not good programming practice; every time OnPaint() is called, those objects are created and
destroyed when they get out of scope, resulting to resource and performance issues. In a real-life application,
GDI+ objects should be generally declared at the class level (EXPORTs, PROTECTs etc) and created only once.

16 Programming GDI+ in Vulcan.Net

Drawing text inside a rectangle

Text may also be drawn inside a virtual rectangle, by using another overload of the DrawString() method:

METHOD DrawString(cText AS STRING, oBrush AS Brush, oFont AS Font, oRect AS Rectangle) ;

AS VOID CLASS Graphics

This version requires a Rectangle object instead of a Point. It draws text starting from the upper-left corner of
the rectangle and wraps text when it reaches its right side. The next sample showcases this functionality; it
creates a Rectangle object that is used to draw a rectangle on the form and then draws a long string inside the
same rectangle. Just in order to make the result a bit fancier, text is drawn using a LinearGradientbrush:

METHOD OnPaint(e AS PaintEventArgs) AS VOID CLASS SampleForm
 LOCAL oGraphics AS Graphics
 LOCAL oRectangle AS Rectangle
 LOCAL oPen AS Pen
 LOCAL oBrush AS LinearGradientBrush
 LOCAL oFont AS Font
 LOCAL cText AS STRING
 oGraphics := e:Graphics

 cText := "Let's draw a very very long string inside this rectangle"
 oBrush := LinearGradientBrush{ Point { 0 , 0 } , Point { 400 , 100 } ,;
 Color.Blue , Color.Red }
 oPen := Pen{ Color.DarkGray}
 oPen:Width := 3
 oPen:DashStyle := DashStyle.DashDotDot

 oRectangle := Rectangle{ 50 , 50 , 300 , 300 }

 oGraphics:DrawRectangle(oPen , oRectangle)

 oFont:=Font{ 'Arial', 28.0 , FontStyle.Bold }
 oGraphics:DrawString(cText , oFont , oBrush , oRectangle)
RETURN

Programming GDI+ in Vulcan.Net 17

Drawing Images

The Graphics class includes a very powerful method for drawing images, named, as one would expect,
DrawImage(). This method has literally dozens of overloads and in its simplest version it requires an Image
object and a (x,y) coordinate pair, specifying the position where the image should be drawn (in its original size):

METHOD DrawImage(oImage AS Image, x AS INT, y AS INT) CLASS Graphics

Bitmap class

Image is an abstract class, which again means that it can not be instantiated directly; instead we will use its most
important subclass, Bitmap, which encapsulates a bitmap image. We usually instantiate a Bitmap object by
loading a bitmap file from disc, using the following constructor method:

CONSTRUCTOR (cFileName AS STRING) CLASS Bitmap

The cFileName parameter must contain the (fully or partially qualified) filename of a bitmap file. GDI+ supports
all commonly used file formats, like .bmp, .tiff, .jpg, .png etc:

oBitmap := Bitmap{ ‘C:\PICTURES\MyPhoto.bmp’} // fully specified filename

oBitmap := Bitmap{ ‘MyPhoto.jpg’} // bitamp file is loaded from the current folder

Putting the pieces together, let’s see a sample OnPaint() method, drawing an Image on the form:

Method OnPaint(e As PaintEventArgs) As Void Class SampleForm
 Local oBitmap As Bitmap

 oBitmap := Bitmap{'image.jpg'}

 e:Graphics:DrawImage(oBitmap , 10 , 10)
Return

This simply draws a JPG image loaded from disc, in its original size. The Image can also be drawn in a different
size (scaled or stretched), using another DrawImage() overload:

METHOD DrawImage(oImage AS Image, x AS INT, y AS INT, width AS INT, height AS INT) ;

CLASS Graphics

The following full sample draws three times the same Image on the form; once in its original size and two times
scaled in different sizes. It also demonstrates using a class variable for holding the image, loading it from disc
every time OnPaint() is called (in our previous sample) was obviously very bad practice:

References "System.Windows.Forms"
References "System.Drawing"

Using System.Windows.Forms
Using System.Drawing

Function Start() As Void
 Local oForm As SampleForm
 oForm:=SampleForm{}
 oForm:Show()
 Application.Run(oForm)
Return

18 Programming GDI+ in Vulcan.Net

Class SampleForm Inherit Form
 Protect oBitmap As Bitmap

Constructor() Class SampleForm
 Super()
 Self:Text := 'GDI Sample'
 Self:oBitmap := Bitmap{'image.jpg'}
 Self:ClientSize := Size{400,400}
Return

Method OnPaint(e As PaintEventArgs) As Void Class SampleForm

 e:Graphics:DrawImage(Self:oBitmap , 10 , 10)

 e:Graphics:DrawImage(Self:oBitmap , 10 , 250 , 130 , 130)

 e:Graphics:DrawImage(Self:oBitmap , 150 , 250 , 230 , 130)

Return

Conclusion

This paper has presented the basic GDI+ features and demonstrated how to use them with Vulcan.NET.
However, there is still a huge part that has been left uncovered. Hopefully this paper will achieve its goal, acting
as a staring point for you to continue exploring the amazing world of GDI+.

